INCOPA & MAGMENT Power Magnetics

a revolutionary technology for the most economical inductive components

PCIM Europe 2016: Wednesday, 11.05.2016, 11:45- 12:15, NCC Ost, Room Hongkong

About us...

- Founded 2010 based on 20+ years experience in the industry
- INCOPA develops and produces customised magnetics
- INCOPA is a specialised company on markets such as renewable energies, medical, aerospace, industrial and transport
- Our mission is to react fast and flexible on customer enquiries.
 We provide prototypes within shortest time
- Furthermore, we provide direct support on magnetic design as well as support on agency approvals
- Technologies: winding, joining, bonding, potting & testing
- Products: transformers (power, signal), chokes (single phase, multi phase, current compensated), special wound components

...and our partner

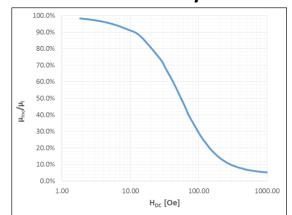
- Founded 2015 based on 26+ years experience in the industry
- MAGMENT develops and produces magnetizable concretes
- MAGMENT materials and applications are worldwide unique
- Main applications are
 - power inductive components
 - wireless power transmission (static & dynamic)
 - induction cooking & heating
 - shielding (LF) and EMC (HF)
 - electromagnetic locks
 - decorative magnetic concrete

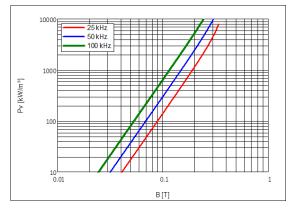
What is a MAGMENT cement concrete?

Is a composite material with soft magnetic grains with a suitable size distribution embedded in a cement matrix:

MAGMENT = MAGnetic ceMENT

- Has initial permeabilities of up to 60 opening up a very broad range of electromagnetic applications.
- Does not involve any pressing processes (!) offering manifold possibilities for cost-efficient and size-unlimited parts
- Is very robust and stable with a prolonged lifetime.
- Allows to make mechanically rugged inductive components with high stability to environmental influences.
- ...and is the most competitive soft magnetic material




Material properties (MC40)

Initial permeability	@ 25°C	μ_{i}		40 ± 10%
Curie-Temperature		T _C	[°C]	> 210
Resistivity	DC	ρ	$[\Omega{\sf m}]$	20
Density		γ	[kg/m³]	3750
Realtive core losses	@ 50kHz 100mT	P_V	[kW/m³]	300
Specific heat		Cp	[J/kg K]	700
Thermal conductivity		λ	[W/mK]	3
Young's modulus		E _c	[MPa]	25000
Compressive strength		f_c	[MPa]	20
Tensile strength		f _t	[MPa]	2

Reversible Permeability vs. DC Bias

Core Loss Density P_V (B)

Designing a power choke: steps

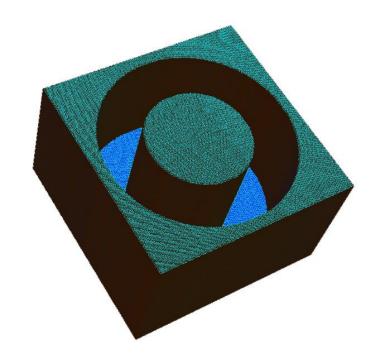
Target parameters: inductance L, rated current I, resistance DCR

Conventional design	MAGMENT design		
1. Select core shape (E, RM,)	1. Select/design coil former		
2. Select core size (E25, RM8,)	2. Layout wire in winding window		
3. Select suitable coil former	3. Design housing		
4. Layout wire in winding window	END		
5. Select housing	THE THE		
6. Select potting material	DATENTED		
END	PROPERTY		

Designing a power choke: differences

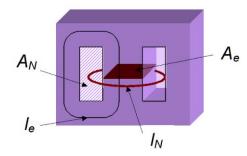
<u>Target parameters</u>: inductance **L**, rated current **I**, resistance **DCR**

Conventional design	MAGMENT design	
Core sizes available only in steps (E55, E65,)		
Limited size availability	No shape or size limitation	
Stacking for simple shapes only (E, U, R)		
Winding filling factor limited	Winding 100% surrounded by magnetic material	
Partial magnetic filling of housing	Potting material = magnetic material	



MAGMENT magnetics design

- Design algorithm gives dimensions by minimizing the total material cost (MAGMENT, wire, bobbin, housing)
- The optimum shape is rectangular with a square base
- Shape or dimensions can be fitted to any given space by putting a constraint to the design calculation
- The resulting magnetic cross sectional area is very large

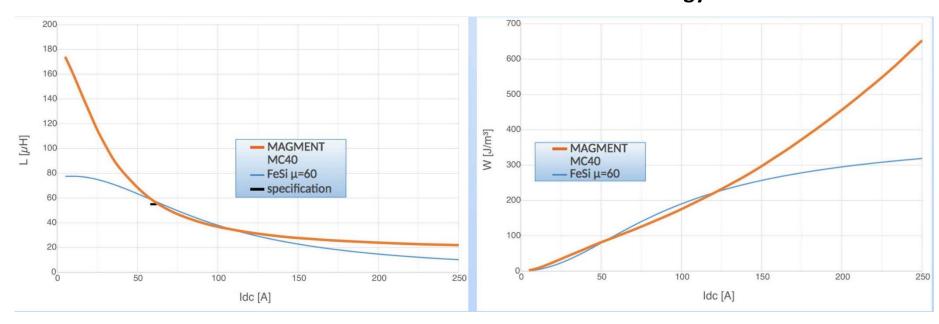


Inductor parameters: a comparison

- Compare a MAGMENT inductor to a conventional one with the <u>same inductance</u>
- The design advantage follow from the effective parameters:
 - ightharpoonup I_e = effective magnetic path
 - ➤ A_e= effective cross sectional area
 - $ightharpoonup V_e = I_e \cdot A_e = effective volume$

• Three different cases yield superior performance and cost:

I _e [mm]	A _e [mm²]	V _e [mm³]	No. of turns	Core loss [W]	Cost [€]
=	>	>	<	<	<
<	=	<	<	<	<<<
<	>	=	<<	<	<<



Power choke benchmark

• Example of a L=55 μ H @ I=60A inverter choke. Conventional powder core design vs. MAGMENT

Inductance vs. DC-Bias current

Stored energy vs. DC-Bias current

Production, Logistics & Costs

- Component manufacturing follows design algorithm results
- All production processes are under one roof
- Short lead times
- Simplified stock holding
- Both design-to-cost and low cost of MAGMENT materials guarantee most economical inductive components

MAGMENT magnetics: a true revolution

- Most economical inductive components
- Highest performance (inductance & low loss)
- Design to any size and shape
- Very large A_e
- Coil completely surrounded by magnetic material
- Innovative manufacturing process
 "Wind and Magnetic Pour"
- Highly efficient logistics

